Genomics of homoploid hybrid speciation: diversity and transcriptional activity of long terminal repeat retrotransposons in hybrid sunflowers.
نویسندگان
چکیده
Hybridization is thought to play an important role in plant evolution by introducing novel genetic combinations and promoting genome restructuring. However, surprisingly little is known about the impact of hybridization on transposable element (TE) proliferation and the genomic response to TE activity. In this paper, we first review the mechanisms by which homoploid hybrid species may arise in nature. We then present hybrid sunflowers as a case study to examine transcriptional activity of long terminal repeat retrotransposons in the annual sunflowers Helianthus annuus, Helianthus petiolaris and their homoploid hybrid derivatives (H. paradoxus, H. anomalus and H. deserticola) using high-throughput transcriptome sequencing technologies (RNAseq). Sampling homoploid hybrid sunflower taxa revealed abundant variation in TE transcript accumulation. In addition, genetic diversity for several candidate genes hypothesized to regulate TE activity was characterized. Specifically, we highlight one candidate chromatin remodelling factor gene with a direct role in repressing TE activity in a hybrid species. This paper shows that TE amplification in hybrid lineages is more idiosyncratic than previously believed and provides a first step towards identifying the mechanisms responsible for regulating and repressing TE expansions.
منابع مشابه
Transposable Element Proliferation and Genome Expansion Are Rare in Contemporary Sunflower Hybrid Populations Despite Widespread Transcriptional Activity of LTR Retrotransposons
Hybridization is a natural phenomenon that has been linked in several organismal groups to transposable element derepression and copy number amplification. A noteworthy example involves three diploid annual sunflower species from North America that have arisen via ancient hybridization between the same two parental taxa, Helianthus annuus and H. petiolaris. The genomes of the hybrid species hav...
متن کاملGenome expansion in three hybrid sunflower species is associated with retrotransposon proliferation
The origin of new diploid species through inter-specific hybridization may be facilitated by rapid genomic reorganization. There is evidence that this process was involved in the independent origins of three annual sunflower species in the genus Helianthus. The three hybrid taxa, H. anomalus, H. deserticola and H. paradoxus, are products of ancient hybridization events between the same two pare...
متن کاملA Nest of LTR Retrotransposons Adjacent the Disease Resistance-Priming Gene NPR1 in Beta vulgaris L. U.S. Hybrid H20
A nest of long terminal repeat (LTR) retrotransposons (RTRs), discovered by LTR_STRUC analysis, is near core genes encoding the NPR1 disease resistance-activating factor and a heat-shock-factor-(HSF-) like protein in sugarbeet hybrid US H20. SCHULTE, a 10 833 bp LTR retrotransposon, with 1372 bp LTRs that are 0.7% divergent, has two ORFs with unexpected introns but encoding a reverse transcript...
متن کاملRapid hybrid speciation in wild sunflowers.
Hybrid or "recombinational" speciation refers to the origin of a new homoploid species via hybridization between chromosomally or genetically divergent parental species. Theory predicts that this mode of speciation is punctuated, but there has been little empirical evidence to support this claim. Here, we test the hypothesis of rapid hybrid speciation by estimating the sizes of parental species...
متن کاملHow common is homoploid hybrid speciation?
Hybridization has long been considered a process that prevents divergence between species. In contrast to this historical view, an increasing number of empirical studies claim to show evidence for hybrid speciation without a ploidy change. However, the importance of hybridization as a route to speciation is poorly understood, and many claims have been made with insufficient evidence that hybrid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 369 1648 شماره
صفحات -
تاریخ انتشار 2014